Learning by Distributed Automata
نویسندگان
چکیده
We introduce a slightly modiied version of a standard learning automaton and show that this`responsive' learning automata eliminates dominated strategies when playing against an unknown environment. This new automaton has strong convergence properties that are easily analyzed, allowing us to compute explicit bounds for convergence rates. Groups of such automata, interacting via a general game, are then studied. We show that synchronous groups of automata converge to the serially undominated set. We then show that, in contrast, asynchronous automata do not necessarily converge to the serially undominated set. However, these asynchronous automata do converge to the serially set-undominated set, which we deene.
منابع مشابه
A Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملCreating Dynamic Sub-Route to Control Congestion Based on Learning Automata Technique in Mobile Ad Hoc Networks
Ad hoc mobile networks have dynamic topology with no central management. Because of the high mobility of nodes, the network topology may change constantly, so creating a routing with high reliability is one of the major challenges of these networks .In the proposed framework first, by finding directions to the destination and calculating the value of the rout the combination of this value with ...
متن کاملImproved Frog Leaping Algorithm Using Cellular Learning Automata
In this paper, a new algorithm which is the result of the combination of cellular learning automata and frog leap algorithm (SFLA) is proposed for optimization in continuous, static environments.At the proposed algorithm, each memeplex of frogs is placed in a cell of cellular learning automata. Learning automata in each cell acts as the brain of memeplex, and will determine the strategy of moti...
متن کاملOptimization Task Scheduling Algorithm in Cloud Computing
Since software systems play an important role in applications more than ever, the security has become one of the most important indicators of softwares.Cloud computing refers to services that run in a distributed network and are accessible through common internet protocols. Presenting a proper scheduling method can lead to efficiency of resources by decreasing response time and costs. This rese...
متن کاملA Cellular Learning Automata (CLA) Approach to Job Shop Scheduling Problem
Job shop scheduling problem (JSSP), as one of the NP-Hard combinatorial optimization problems, has attracted the attention of many researchers during the last four decades. The overall purpose regarding this problem is to minimize maximum completion time of jobs, known as makespan. This paper addresses an approach to evolving Cellular Learning Automata (CLA) in order to enable it to solve the J...
متن کاملA Self-Organizing Channel Assignment Algorithm: A Cellular Learning Automata Approach
Introduction of micro-cellular networks offer a potential increase in capacity of cellular networks, but they create problems in management of the cellular networks. A solution to these problems is self-organizing channel assignment algorithm with distributed control. In this paper, ''le first introduce the model of cellular learning automata in which learning automata are used to adjust the st...
متن کامل